A Quantitative Criterion for Selecting the Optimal Sparse Representation of Dynamic Cardiac Data in Compressed Mri
نویسندگان
چکیده
One of the important performance factors in compressed sensing (CS) reconstructions is the level of sparsity in sparse representation of the signal. The goal in CS is to find the sparsest representation of the underlying signal or image. However, for compressible or nearly sparse signals such as dynamic cardiac MR data, the quantification of sparsity is quite subjective due to issues such as dropped SNR or low contrast to noise ratio (CNR) in sparse domains such as x-f space or temporal difference domains. Hence, we need a criterion to compare different sparse representations of compressible signals. In this paper, we define a model that can fit the decay of practical compressible signals and as an application; we verify that this model can be used as a basis for selecting the optimal sparse representation of dynamic cardiac MR data.
منابع مشابه
Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملAccelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation
Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse codin...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملLow-Resolution Cartesian Compressed Sensing MRI: Application to Dynamic Susceptibility MRI
INTRODUCTION Dynamic susceptibility contrast (DSC) MRI is a highly sensitive approach for evaluating the hemodynamic status of normal and pathologic tissue (1). Since high temporal sampling requirements are needed to characterize the first pass of a contrast agent (CA) through tissue, most DSC-MRI studies employ low spatial resolution acquisition methods (e.g., echo planar imaging or FLASH). Co...
متن کامل